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Introduction:

Problem:

New Methods:

What are emulators?

Why is it difficult to train emulators for chaos?

How do we train emulators to capture chaos?
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What are emulators?
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Dynamical Systems

4
https://github.com/NVlabs/FourCastNet

LIGO/T. Pyle
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Machine Learning Emulators

Emulators are machine 
learning models trained to 
simulate physical systems.

Emulators often consist of a 
physics-informed 
architecture trained on 
observed or simulated data.
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6Pathak et al. arXiv:2202.11214
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Machine Learning Emulators

Accelerate expensive numerical simulations: 
fast predictions, fast sampling for uncertainty quantification

Improve existing physical models using data:
more accurate predictions, better scientific understanding

Solve inverse problems (simulation-based inference):
parameter estimation, state reconstruction
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Why is it difficult to train 
emulators for chaos?
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Chaotic Dynamics

A key feature of chaos is sensitivity to initial conditions.

Simple example: Lorenz-63
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Chaotic Dynamics & Noise

Training emulators for chaotic dynamics is hard because chaos is 
fundamentally unpredictable.

Noise makes this worse due to sensitivity to initial conditions.

→ Instead of short-term forecasts, focus on long-term statistics.

12



NeurIPS 2023

Modeling Chaos: Forecasting vs. Statistics
Example:

Weather vs. Climate
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https://www.bbc.com/news/world-us-canada-47071683
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Modeling Chaos: Forecasting vs. Statistics

Accurate short-term forecasting
≠ 

Correct long-term statistics!
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Modeling Chaos: Forecasting vs. Statistics

Accurate short-term forecasting
≠ 

Correct long-term statistics!

Preview of results on noisy data:
Training on short-term RMSE

vs.
Training using invariant statistics
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Effect of Noise on Error Metrics

Original trajectory

Noisy initial conditions

Noisy IC & measurements
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Effect of Noise on Error Metrics

Original trajectory

Noisy initial conditions

Noisy IC & measurements
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NeurIPS 2023

How do we train emulators 
to capture chaos?
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NeurIPS 2023

Recent Work

Zongyi Li et al. NeurIPS 2022
proposed Sobolev norm and 
dissipative regularization.

Jason A. Platt et al. Chaos (2023)
proposed enforcing dynamical
invariants in reservoir computers.

25
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Wout based on training data utrain. Platt et al.45 generated a num-
ber of long-term forecasts uf(t) and compared them to the data
u; with enough data, this procedure often leads to a model that
reproduces the correct dynamical invariants. Without the explicit
enforcement of these invariants, however, the model can fail to cap-
ture the dynamics—particularly for high dimensional systems and
in cases where the number of trajectories M is constrained. Here, we
add the dynamical invariants (Cx) as a constraint in order to directly
train for generalizability, similar to Beucler et al.49 This scheme is
illustrated in Fig. 2. The global optimization routine used to mini-
mize the cost function was the covariance matrix adaption evolution
strategy (CMA-ES).50,51 CMA-ES is a derivative free global opti-
mization routine involving the iterative update of sampled points
through an evolutionary strategy. At each iteration, only the sam-
pled points with the lowest loss are kept and the distribution of
these points are used to update the mean and covariance matrix
of the routine from which new samples are drawn. As we are opti-
mizing a non-convex function, the technique is not guaranteed to
converge to the global optimum in the given time specified for opti-
mization—indeed, we often see differences in the parameters found
by the routine depending on the initial sampling.

We use the Lyapunov exponents and the fractal dimension as
examples of dynamical invariants in order to demonstrate the tech-
nique. With the equations of motion, such as Eq. (4) for the RC, it
is quite simple to calculate these quantities using well known and
efficient algorithms.30 When training directly from data—without
knowledge of the underlying system—we may not know the equa-
tions of motion; therefore, these quantities must be estimated. The
largest LE can often be approximated from time series data,29,52,53 and
the fractal dimension can be calculated using various techniques.29,54

A calculation of the full LE spectrum is more difficult. The use
of other dynamical invariants derived from the invariant measure
[Eq. (2)] is also possible, for instance, the energy density spectrum
of a fluid dynamical system as a function of wavenumber.

V. RESULTS

A. Lorenz 1996

Our first test case for the RC is the Lorenz 1996 system (L96),25

a standard testbed for data assimilation applications in numerical
weather prediction. L96 describes the evolution of a scalar quantity
over a number of sites positioned uniformly over a periodic lattice
of constant latitude. The evolution of this scalar quantity is governed
by terms representing advection and diffusion,

duk

dt
= −uk−1(uk−2 − uk+1) − uk + F. (7)

In this case, we take the number of sites to be D = 10 and forcing
F = 8.0 with the purpose of making the system hyperchaotic, with
three positive Lyapunov exponents (Fig. 3).

The results for CRC = LEs [Eq. (6)] are shown in Fig. 4. When
no global information is given to the RC, then it can fail to generalize
when presented with an unseen input. Simply providing the largest
LE to the RC during training enables the neural networks to

1. generalize to unseen data so that there are good predictions over
the entire range of possible initial conditions and

2. reconstruct the attractor as in Refs. 46 and 55 with the prediction
giving the correct ergodic properties of the data even after the
prediction necessarily diverges from the ground truth.

FIG. 2. Parameter optimization of a reservoir computer showing the introduction of dynamical invariants. The observed data are split into training, validation, and testing sets
with the invariants calculated from the data.29 These quantities can then be incorporated into the loss function to improve the overall training of the RC. A general discussion
of the training strategy is found in Platt et al.45

Chaos 33, 103107 (2023); doi: 10.1063/5.0156999 33, 103107-4
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Using Known Summary Statistics

For high-dimensional problems, we cannot explicitly match the 
attractor measure.
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Using Known Summary Statistics

For high-dimensional problems, we cannot explicitly match the 
attractor measure.
Instead, we can use Sinkhorn divergence (~ Wasserstein optimal 
transport distance) to match known summary statistics.
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1. Using Known Summary Statistics

For high-dimensional problems, we cannot explicitly match the 
attractor measure.
Instead, we can use Sinkhorn divergence (~ Wasserstein optimal 
transport distance) to match known summary statistics.
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relevant statistics?
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Representation Learning

Representation learning aims to automatically discover 
representations or features that characterize a dataset.
• Useful for dimensionality reduction, downstream tasks, and 

sometimes interpretability.

29
https://sthalles.github.io/a-few-words-on-representation-learning/
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Representation Learning

Representation learning aims to automatically discover 
representations or features that characterize a dataset.
• Useful for dimensionality reduction, downstream tasks, and 

sometimes interpretability.

Scientists have always been doing representation learning!
• The world is inherently high-dimensional.
• What we call “scientific understanding” is a low-dimensional 

description.

30

What if we don’t know the 
relevant statistics?
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Representation Learning
Classical Manifold Learning (popular for data visualization)

• PCA, MDS, Isomap, t-SNE, UMAP, LLE

• Diffusion maps, Laplacian eigenmaps

Unsupervised/Self-Supervised Learning
(popular in computer vision & natural language processing)

• Autoencoders, variational autoencoders

• Contrastive learning, CLIP

31
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Representation Learning
Classical Manifold Learning (popular for data visualization)

• PCA, MDS, Isomap, t-SNE, UMAP, LLE

• Diffusion maps, Laplacian eigenmaps

Unsupervised/Self-Supervised Learning
(popular in computer vision & natural language processing)

• Autoencoders, variational autoencoders

• Contrastive learning, CLIP
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Learning Invariant Statistics from Data

Without prior knowledge, we can use contrastive learning in a 
multi-environment setting to learn relevant invariant statistics.
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Training Emulators on Chaotic Dynamics

Optimal Transport (OT):
1. Choose summary statistics via 

expert knowledge
2. Train w/ RMSE + OT Sinkhorn loss

Contrastive Learning (CL):
1. Learn invariant statistics via 

contrastive learning
2. Train w/ RMSE + CL feature loss

34
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Emulator Evaluation:
Kuramoto–Sivashinsky
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The term in the numerator enforces alignment of the positive pairs which ensures we obtain time-
invariant statistics, while the term in the numerator encourages uniformity, i.e. maximizing mutual
information between the data and the embedding, which ensures we can distinguish between negative
pairs from different trajectories [41]. This provides intuition for why our learned encoder f identifies
relevant time-invariant statistics that can distinguish different chaotic attractors.

Contrastive feature loss. To construct our feature loss, we use the cosine distance between a series
of features of the encoder network f [42]:

`CL

�
U, Û; f 

�
:=

X

l

cos
�
f l

 
(U), f l

 
(Û)

�
, (17)

where f l

 
gives the output the l-th layer of the neural network. The combined loss that we use for

training the neural operator is given by

`(✓) = E
n2{1,...,N}

I2{0,...,L�K}


� `CL

�
U

(n)

I:I+K
, Û(n)

I:h:I+K
; f 

�
+ `RMSE

�
U

(n)

I:I+K
, Û(n)

I:hRMSE:I+K

��
, (18)

where � > 0 is a hyperparameter.

4 Experiments

We evaluate our approach on the 1D chaotic Kuramoto–Sivanshinsky (KS) system and a finite-
dimensional Lorenz 96 system. In all cases, we ensure that the systems under investigation remain
in chaotic regimes. We demonstrate the effectiveness of our approach in preserving key statistics in
these unpredictable systems, showcasing our ability to handle the complex nature of chaotic systems.
The code is available at: https://github.com/roxie62/neural_operators_for_chaos.

Experimental setup. Our data consists of noisy observations u(t) with noise ⌘ ⇠ N (0, r2�2I),
where �2 is the temporal variance of the trajectory and r is a scaling factor. Baselines. We
primarily consider the baseline as training with RMSE [2]. We have additional baselines in Appendix
B, including Gaussian denoising and a Sobolev norm loss with dissipative regularization [16].
Backbones. We use the Fourier neural operator (FNO, [18]). Evaluation metrics. We use a variety
of statistics-based evaluation metrics and other measures that characterize the chaotic attractor. See
Appendix C.1 for details.

4.1 Lorenz-96

As is a common test model for climate systems, data assimilation, and other geophysical applications
[43–45], the Lorenz-96 system is a key tool for studying chaos theory, turbulence, and nonlinear
dynamical systems. It is described by the differential equation

dui

dt
= (ui+1 � ui�2)ui�1 � ui + F (19)

Its dynamics exhibit strong energy-conserving non-linearity, and for a large F � 10, it can exhibit
strong chaotic turbulence and symbolizes the inherent unpredictability of the Earth’s climate.

Experimental setup. When using optimal transport loss, we assume that expert knowledge is
derived from the underlying equation. For Lorenz-96, we define the relevant statistics as s(u) :=
{
dui
dt

, (ui+1 � ui�2)ui�1, ui}. We generate 2000 training data points with each �(n) randomly
sampled from a uniform distribution with the range [10.0, 18.0]. We vary the noise level r from
0.1 to 0.3 and show consistent improvement in the relevant statistics. Results. The results are
presented in Table 1, and predictions and invariant statistics are shown in Fig. 3 (refer to C.4 for more
visualizations).

4.2 Kuramoto–Sivashinsky

Known as a model for spatiotemporal chaos, Kuramoto–Sivashinsky (KS) has been widely used to
describe various physical phenomena, including fluid flows in pipes, plasma physics, and dynamics
of certain chemical reactions [46]. It captures wave steepening via the nonlinear term u@u

@x
, models

dispersion effects through @
2
u

@x2 , and manages discontinuities by introducing hyper-viscosity via @
4
u

@x4 :
@u

@t
= �u

@u

@x
� �

@2u

@x2
�

@4u

@x4
. (20)
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r Training Histogram Error # Energy Spec. Error # Leading LE Error # FD Error #

0.1
`RMSE 0.056 (0.051, 0.062) 0.083 (0.078, 0.090) 0.013 (0.006, 0.021) 1.566 (0.797, 2.309)
`OT + `RMSE 0.029 (0.027, 0.032) 0.058 (0.052, 0.064) 0.050 (0.040, 0.059) 1.424 (0.646, 2.315)
`CL + `RMSE 0.033 (0.029, 0.037) 0.058 (0.049, 0.065) 0.065 (0.058, 0.073) 1.042 (0.522, 1.685)

0.2
`RMSE 0.130 (0.118, 0.142) 0.182 (0.172, 0.188) 0.170 (0.156, 0.191) 2.481 (1.428, 3.807)
`OT + `RMSE 0.039 (0.035, 0.042) 0.086 (0.079, 0.095) 0.016 (0.006, 0.030) 2.403 (1.433, 3.768)
`CL + `RMSE 0.073 (0.066, 0.080) 0.131 (0.117, 0.149) 0.012 (0.006, 0.018) 1.681 (0.656, 2.682)

0.3
`RMSE 0.215 (0.204, 0.234) 0.291 (0.280, 0.305) 0.440 (0.425, 0.463) 3.580 (2.333, 4.866)
`OT + `RMSE 0.057 (0.052, 0.064) 0.123 (0.116, 0.135) 0.084 (0.062, 0.134) 3.453 (2.457, 4.782)
`CL + `RMSE 0.132 (0.111, 0.151) 0.241 (0.208, 0.285) 0.064 (0.045, 0.091) 1.894 (0.942, 3.108)

Table 1: Emulator performance on Lorenz-96 data with varying noise scale r = 0.1, 0.2, 0.3.
The median (25th, 75th percentile) of the evaluation metrics (Appendix C.1) are computed on 200
Lorenz-96 test instances (each with 1500 time steps) for the neural operator trained with (1) only
RMSE loss `RMSE; (2) optimal transport (OT) and RMSE loss `OT + `RMSE (using prior knowledge
to choose summary statistics); and (3) contrastive learning (CL) and RMSE loss `CL + `RMSE

(without prior knowledge). We show significant improvements on the long-term statistical metrics
including L1 histogram error of the chosen statistics S(u) := {

dui
dt

, (ui+1 � ui�2)ui�1, ui}; relative
error of Fourier energy spectrum; and absolute error of estimated fractal dimension (FD). For high
noise, OT and CL training also improve the leading Lyapunov exponent (LE) of the neural operator.

Training Histogram Error # Energy Spec. Error # Leading LE Error #

`RMSE 0.390 (0.325, 0.556) 0.290 (0.225, 0.402) 0.101 (0.069, 0.122)
`OT + `RMSE 0.172 (0.146, 0.197) 0.211 (0.188, 0.250) 0.094 (0.041, 0.127)
`CL + `RMSE 0.193 (0.148, 0.247) 0.176 (0.130, 0.245) 0.108 (0.068, 0.132)

Table 2: Emulator performance on Kuramoto–Sivashinsky data with noise scale r = 0.3. The
median (25th, 75th percentile) of the evaluation metrics (Appendix C.1) are computed on 200
Kuramoto–Sivashinsky test instances (each with 1000 time steps) for the neural operator trained
with (1) only RMSE loss `RMSE; (2) optimal transport (OT) and RMSE loss `OT + `RMSE (using
prior knowledge to choose summary statistics); and (3) contrastive learning (CL) and RMSE loss
`CL + `RMSE (without prior knowledge). We again show significant improvements in the long-term
statistical metrics including L1 histogram error of the chosen statistics S(u) := {

@u

@t
, @u

@x
, @

2
u

@x2 } and
relative error of Fourier energy spectrum. The fractal dimension (FD) is highly unstable in high
dimensions [48] and could not be estimated for this dataset.

Limitations. Because we rely on invariant measures, our current approach is limited to trajectory data
from attractors, i.e. we assume that the dynamics have reached an attractor and are not in a transient
phase. We also cannot handle explicit time dependence, including time-dependent forcing or control
parameters. For the optimal transport approach, choosing informative summary statistics based on
prior knowledge is key to good performance (Appendix B.3). For the contrastive learning approach,
the quality of the learned invariant statistics also depends on the diversity of the environments present
in the multi-environment setting, although our additional experiments show that we can still obtain
good performance even with minimal environment diversity (Appendix B.4).

Future work. In the future, we may be able to adapt our approaches to allow for mild time dependence
by restricting the time range over which we compute statistics and select positive pairs. This would
allow us to study slowly varying dynamics as well as sharp discrete transitions such as tipping points.
We can also improve the diversity of the data for contrastive learning by designing new augmentations
or using the training trajectory of the neural operator to generate more diverse negative pairs. We
will investigate generalizing our approaches to other difficult systems, such as stochastic differential
equations or stochastic PDEs, and we would like to further study the trade-offs and synergies between
focusing on short-term forecasting (RMSE) and capturing long-term behavior (invariant statistics).
In addition, we would like to investigate and compare training methods [22–24] across different
architectures.

Broader impacts. While better emulators for chaotic dynamics may be used in a wide range of
applications, we foresee no direct negative societal impacts.
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The term in the numerator enforces alignment of the positive pairs which ensures we obtain time-
invariant statistics, while the term in the numerator encourages uniformity, i.e. maximizing mutual
information between the data and the embedding, which ensures we can distinguish between negative
pairs from different trajectories [41]. This provides intuition for why our learned encoder f identifies
relevant time-invariant statistics that can distinguish different chaotic attractors.

Contrastive feature loss. To construct our feature loss, we use the cosine distance between a series
of features of the encoder network f [42]:

`CL

�
U, Û; f 

�
:=

X

l

cos
�
f l

 
(U), f l

 
(Û)

�
, (17)

where f l

 
gives the output the l-th layer of the neural network. The combined loss that we use for

training the neural operator is given by

`(✓) = E
n2{1,...,N}

I2{0,...,L�K}


� `CL

�
U

(n)

I:I+K
, Û(n)

I:h:I+K
; f 

�
+ `RMSE

�
U

(n)

I:I+K
, Û(n)

I:hRMSE:I+K

��
, (18)

where � > 0 is a hyperparameter.

4 Experiments

We evaluate our approach on the 1D chaotic Kuramoto–Sivanshinsky (KS) system and a finite-
dimensional Lorenz 96 system. In all cases, we ensure that the systems under investigation remain
in chaotic regimes. We demonstrate the effectiveness of our approach in preserving key statistics in
these unpredictable systems, showcasing our ability to handle the complex nature of chaotic systems.
The code is available at: https://github.com/roxie62/neural_operators_for_chaos.

Experimental setup. Our data consists of noisy observations u(t) with noise ⌘ ⇠ N (0, r2�2I),
where �2 is the temporal variance of the trajectory and r is a scaling factor. Baselines. We
primarily consider the baseline as training with RMSE [2]. We have additional baselines in Appendix
B, including Gaussian denoising and a Sobolev norm loss with dissipative regularization [16].
Backbones. We use the Fourier neural operator (FNO, [18]). Evaluation metrics. We use a variety
of statistics-based evaluation metrics and other measures that characterize the chaotic attractor. See
Appendix C.1 for details.

4.1 Lorenz-96

As is a common test model for climate systems, data assimilation, and other geophysical applications
[43–45], the Lorenz-96 system is a key tool for studying chaos theory, turbulence, and nonlinear
dynamical systems. It is described by the differential equation

dui

dt
= (ui+1 � ui�2)ui�1 � ui + F (19)

Its dynamics exhibit strong energy-conserving non-linearity, and for a large F � 10, it can exhibit
strong chaotic turbulence and symbolizes the inherent unpredictability of the Earth’s climate.

Experimental setup. When using optimal transport loss, we assume that expert knowledge is
derived from the underlying equation. For Lorenz-96, we define the relevant statistics as s(u) :=
{
dui
dt

, (ui+1 � ui�2)ui�1, ui}. We generate 2000 training data points with each �(n) randomly
sampled from a uniform distribution with the range [10.0, 18.0]. We vary the noise level r from
0.1 to 0.3 and show consistent improvement in the relevant statistics. Results. The results are
presented in Table 1, and predictions and invariant statistics are shown in Fig. 3 (refer to C.4 for more
visualizations).

4.2 Kuramoto–Sivashinsky

Known as a model for spatiotemporal chaos, Kuramoto–Sivashinsky (KS) has been widely used to
describe various physical phenomena, including fluid flows in pipes, plasma physics, and dynamics
of certain chemical reactions [46]. It captures wave steepening via the nonlinear term u@u

@x
, models

dispersion effects through @
2
u

@x2 , and manages discontinuities by introducing hyper-viscosity via @
4
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@x4 :
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• We see significant improvements on 
statistical properties for noisy data.
• Again, contrastive learning requires 

no prior knowledge!
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r Training Histogram Error # Energy Spec. Error # Leading LE Error # FD Error #

0.1
`RMSE 0.056 (0.051, 0.062) 0.083 (0.078, 0.090) 0.013 (0.006, 0.021) 1.566 (0.797, 2.309)
`OT + `RMSE 0.029 (0.027, 0.032) 0.058 (0.052, 0.064) 0.050 (0.040, 0.059) 1.424 (0.646, 2.315)
`CL + `RMSE 0.033 (0.029, 0.037) 0.058 (0.049, 0.065) 0.065 (0.058, 0.073) 1.042 (0.522, 1.685)

0.2
`RMSE 0.130 (0.118, 0.142) 0.182 (0.172, 0.188) 0.170 (0.156, 0.191) 2.481 (1.428, 3.807)
`OT + `RMSE 0.039 (0.035, 0.042) 0.086 (0.079, 0.095) 0.016 (0.006, 0.030) 2.403 (1.433, 3.768)
`CL + `RMSE 0.073 (0.066, 0.080) 0.131 (0.117, 0.149) 0.012 (0.006, 0.018) 1.681 (0.656, 2.682)

0.3
`RMSE 0.215 (0.204, 0.234) 0.291 (0.280, 0.305) 0.440 (0.425, 0.463) 3.580 (2.333, 4.866)
`OT + `RMSE 0.057 (0.052, 0.064) 0.123 (0.116, 0.135) 0.084 (0.062, 0.134) 3.453 (2.457, 4.782)
`CL + `RMSE 0.132 (0.111, 0.151) 0.241 (0.208, 0.285) 0.064 (0.045, 0.091) 1.894 (0.942, 3.108)

Table 1: Emulator performance on Lorenz-96 data with varying noise scale r = 0.1, 0.2, 0.3.
The median (25th, 75th percentile) of the evaluation metrics (Appendix C.1) are computed on 200
Lorenz-96 test instances (each with 1500 time steps) for the neural operator trained with (1) only
RMSE loss `RMSE; (2) optimal transport (OT) and RMSE loss `OT + `RMSE (using prior knowledge
to choose summary statistics); and (3) contrastive learning (CL) and RMSE loss `CL + `RMSE

(without prior knowledge). We show significant improvements on the long-term statistical metrics
including L1 histogram error of the chosen statistics S(u) := {

dui
dt

, (ui+1 � ui�2)ui�1, ui}; relative
error of Fourier energy spectrum; and absolute error of estimated fractal dimension (FD). For high
noise, OT and CL training also improve the leading Lyapunov exponent (LE) of the neural operator.

Training Histogram Error # Energy Spec. Error # Leading LE Error #

`RMSE 0.390 (0.325, 0.556) 0.290 (0.225, 0.402) 0.101 (0.069, 0.122)
`OT + `RMSE 0.172 (0.146, 0.197) 0.211 (0.188, 0.250) 0.094 (0.041, 0.127)
`CL + `RMSE 0.193 (0.148, 0.247) 0.176 (0.130, 0.245) 0.108 (0.068, 0.132)

Table 2: Emulator performance on Kuramoto–Sivashinsky data with noise scale r = 0.3. The
median (25th, 75th percentile) of the evaluation metrics (Appendix C.1) are computed on 200
Kuramoto–Sivashinsky test instances (each with 1000 time steps) for the neural operator trained
with (1) only RMSE loss `RMSE; (2) optimal transport (OT) and RMSE loss `OT + `RMSE (using
prior knowledge to choose summary statistics); and (3) contrastive learning (CL) and RMSE loss
`CL + `RMSE (without prior knowledge). We again show significant improvements in the long-term
statistical metrics including L1 histogram error of the chosen statistics S(u) := {

@u

@t
, @u

@x
, @

2
u

@x2 } and
relative error of Fourier energy spectrum. The fractal dimension (FD) is highly unstable in high
dimensions [48] and could not be estimated for this dataset.

Limitations. Because we rely on invariant measures, our current approach is limited to trajectory data
from attractors, i.e. we assume that the dynamics have reached an attractor and are not in a transient
phase. We also cannot handle explicit time dependence, including time-dependent forcing or control
parameters. For the optimal transport approach, choosing informative summary statistics based on
prior knowledge is key to good performance (Appendix B.3). For the contrastive learning approach,
the quality of the learned invariant statistics also depends on the diversity of the environments present
in the multi-environment setting, although our additional experiments show that we can still obtain
good performance even with minimal environment diversity (Appendix B.4).

Future work. In the future, we may be able to adapt our approaches to allow for mild time dependence
by restricting the time range over which we compute statistics and select positive pairs. This would
allow us to study slowly varying dynamics as well as sharp discrete transitions such as tipping points.
We can also improve the diversity of the data for contrastive learning by designing new augmentations
or using the training trajectory of the neural operator to generate more diverse negative pairs. We
will investigate generalizing our approaches to other difficult systems, such as stochastic differential
equations or stochastic PDEs, and we would like to further study the trade-offs and synergies between
focusing on short-term forecasting (RMSE) and capturing long-term behavior (invariant statistics).
In addition, we would like to investigate and compare training methods [22–24] across different
architectures.

Broader impacts. While better emulators for chaotic dynamics may be used in a wide range of
applications, we foresee no direct negative societal impacts.
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The term in the numerator enforces alignment of the positive pairs which ensures we obtain time-
invariant statistics, while the term in the numerator encourages uniformity, i.e. maximizing mutual
information between the data and the embedding, which ensures we can distinguish between negative
pairs from different trajectories [41]. This provides intuition for why our learned encoder f identifies
relevant time-invariant statistics that can distinguish different chaotic attractors.

Contrastive feature loss. To construct our feature loss, we use the cosine distance between a series
of features of the encoder network f [42]:

`CL

�
U, Û; f 

�
:=

X

l

cos
�
f l

 
(U), f l

 
(Û)

�
, (17)

where f l

 
gives the output the l-th layer of the neural network. The combined loss that we use for

training the neural operator is given by

`(✓) = E
n2{1,...,N}

I2{0,...,L�K}


� `CL

�
U

(n)

I:I+K
, Û(n)

I:h:I+K
; f 

�
+ `RMSE

�
U

(n)

I:I+K
, Û(n)

I:hRMSE:I+K

��
, (18)

where � > 0 is a hyperparameter.

4 Experiments

We evaluate our approach on the 1D chaotic Kuramoto–Sivanshinsky (KS) system and a finite-
dimensional Lorenz 96 system. In all cases, we ensure that the systems under investigation remain
in chaotic regimes. We demonstrate the effectiveness of our approach in preserving key statistics in
these unpredictable systems, showcasing our ability to handle the complex nature of chaotic systems.
The code is available at: https://github.com/roxie62/neural_operators_for_chaos.

Experimental setup. Our data consists of noisy observations u(t) with noise ⌘ ⇠ N (0, r2�2I),
where �2 is the temporal variance of the trajectory and r is a scaling factor. Baselines. We
primarily consider the baseline as training with RMSE [2]. We have additional baselines in Appendix
B, including Gaussian denoising and a Sobolev norm loss with dissipative regularization [16].
Backbones. We use the Fourier neural operator (FNO, [18]). Evaluation metrics. We use a variety
of statistics-based evaluation metrics and other measures that characterize the chaotic attractor. See
Appendix C.1 for details.

4.1 Lorenz-96

As is a common test model for climate systems, data assimilation, and other geophysical applications
[43–45], the Lorenz-96 system is a key tool for studying chaos theory, turbulence, and nonlinear
dynamical systems. It is described by the differential equation

dui

dt
= (ui+1 � ui�2)ui�1 � ui + F (19)

Its dynamics exhibit strong energy-conserving non-linearity, and for a large F � 10, it can exhibit
strong chaotic turbulence and symbolizes the inherent unpredictability of the Earth’s climate.

Experimental setup. When using optimal transport loss, we assume that expert knowledge is
derived from the underlying equation. For Lorenz-96, we define the relevant statistics as s(u) :=
{
dui
dt

, (ui+1 � ui�2)ui�1, ui}. We generate 2000 training data points with each �(n) randomly
sampled from a uniform distribution with the range [10.0, 18.0]. We vary the noise level r from
0.1 to 0.3 and show consistent improvement in the relevant statistics. Results. The results are
presented in Table 1, and predictions and invariant statistics are shown in Fig. 3 (refer to C.4 for more
visualizations).

4.2 Kuramoto–Sivashinsky

Known as a model for spatiotemporal chaos, Kuramoto–Sivashinsky (KS) has been widely used to
describe various physical phenomena, including fluid flows in pipes, plasma physics, and dynamics
of certain chemical reactions [46]. It captures wave steepening via the nonlinear term u@u

@x
, models

dispersion effects through @
2
u

@x2 , and manages discontinuities by introducing hyper-viscosity via @
4
u

@x4 :
@u

@t
= �u

@u

@x
� �

@2u

@x2
�

@4u

@x4
. (20)
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r Training Histogram Error # Energy Spec. Error # Leading LE Error # FD Error #

0.1
`RMSE 0.056 (0.051, 0.062) 0.083 (0.078, 0.090) 0.013 (0.006, 0.021) 1.566 (0.797, 2.309)
`OT + `RMSE 0.029 (0.027, 0.032) 0.058 (0.052, 0.064) 0.050 (0.040, 0.059) 1.424 (0.646, 2.315)
`CL + `RMSE 0.033 (0.029, 0.037) 0.058 (0.049, 0.065) 0.065 (0.058, 0.073) 1.042 (0.522, 1.685)

0.2
`RMSE 0.130 (0.118, 0.142) 0.182 (0.172, 0.188) 0.170 (0.156, 0.191) 2.481 (1.428, 3.807)
`OT + `RMSE 0.039 (0.035, 0.042) 0.086 (0.079, 0.095) 0.016 (0.006, 0.030) 2.403 (1.433, 3.768)
`CL + `RMSE 0.073 (0.066, 0.080) 0.131 (0.117, 0.149) 0.012 (0.006, 0.018) 1.681 (0.656, 2.682)

0.3
`RMSE 0.215 (0.204, 0.234) 0.291 (0.280, 0.305) 0.440 (0.425, 0.463) 3.580 (2.333, 4.866)
`OT + `RMSE 0.057 (0.052, 0.064) 0.123 (0.116, 0.135) 0.084 (0.062, 0.134) 3.453 (2.457, 4.782)
`CL + `RMSE 0.132 (0.111, 0.151) 0.241 (0.208, 0.285) 0.064 (0.045, 0.091) 1.894 (0.942, 3.108)

Table 1: Emulator performance on Lorenz-96 data with varying noise scale r = 0.1, 0.2, 0.3.
The median (25th, 75th percentile) of the evaluation metrics (Appendix C.1) are computed on 200
Lorenz-96 test instances (each with 1500 time steps) for the neural operator trained with (1) only
RMSE loss `RMSE; (2) optimal transport (OT) and RMSE loss `OT + `RMSE (using prior knowledge
to choose summary statistics); and (3) contrastive learning (CL) and RMSE loss `CL + `RMSE

(without prior knowledge). We show significant improvements on the long-term statistical metrics
including L1 histogram error of the chosen statistics S(u) := {

dui
dt

, (ui+1 � ui�2)ui�1, ui}; relative
error of Fourier energy spectrum; and absolute error of estimated fractal dimension (FD). For high
noise, OT and CL training also improve the leading Lyapunov exponent (LE) of the neural operator.

Training Histogram Error # Energy Spec. Error # Leading LE Error #

`RMSE 0.390 (0.325, 0.556) 0.290 (0.225, 0.402) 0.101 (0.069, 0.122)
`OT + `RMSE 0.172 (0.146, 0.197) 0.211 (0.188, 0.250) 0.094 (0.041, 0.127)
`CL + `RMSE 0.193 (0.148, 0.247) 0.176 (0.130, 0.245) 0.108 (0.068, 0.132)

Table 2: Emulator performance on Kuramoto–Sivashinsky data with noise scale r = 0.3. The
median (25th, 75th percentile) of the evaluation metrics (Appendix C.1) are computed on 200
Kuramoto–Sivashinsky test instances (each with 1000 time steps) for the neural operator trained
with (1) only RMSE loss `RMSE; (2) optimal transport (OT) and RMSE loss `OT + `RMSE (using
prior knowledge to choose summary statistics); and (3) contrastive learning (CL) and RMSE loss
`CL + `RMSE (without prior knowledge). We again show significant improvements in the long-term
statistical metrics including L1 histogram error of the chosen statistics S(u) := {

@u

@t
, @u

@x
, @

2
u

@x2 } and
relative error of Fourier energy spectrum. The fractal dimension (FD) is highly unstable in high
dimensions [48] and could not be estimated for this dataset.

Limitations. Because we rely on invariant measures, our current approach is limited to trajectory data
from attractors, i.e. we assume that the dynamics have reached an attractor and are not in a transient
phase. We also cannot handle explicit time dependence, including time-dependent forcing or control
parameters. For the optimal transport approach, choosing informative summary statistics based on
prior knowledge is key to good performance (Appendix B.3). For the contrastive learning approach,
the quality of the learned invariant statistics also depends on the diversity of the environments present
in the multi-environment setting, although our additional experiments show that we can still obtain
good performance even with minimal environment diversity (Appendix B.4).

Future work. In the future, we may be able to adapt our approaches to allow for mild time dependence
by restricting the time range over which we compute statistics and select positive pairs. This would
allow us to study slowly varying dynamics as well as sharp discrete transitions such as tipping points.
We can also improve the diversity of the data for contrastive learning by designing new augmentations
or using the training trajectory of the neural operator to generate more diverse negative pairs. We
will investigate generalizing our approaches to other difficult systems, such as stochastic differential
equations or stochastic PDEs, and we would like to further study the trade-offs and synergies between
focusing on short-term forecasting (RMSE) and capturing long-term behavior (invariant statistics).
In addition, we would like to investigate and compare training methods [22–24] across different
architectures.

Broader impacts. While better emulators for chaotic dynamics may be used in a wide range of
applications, we foresee no direct negative societal impacts.
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r Training Histogram Error # Energy Spec. Error # Leading LE Error # FD Error #

0.1
`RMSE 0.056 (0.051, 0.062) 0.083 (0.078, 0.090) 0.013 (0.006, 0.021) 1.566 (0.797, 2.309)
`OT + `RMSE 0.029 (0.027, 0.032) 0.058 (0.052, 0.064) 0.050 (0.040, 0.059) 1.424 (0.646, 2.315)
`CL + `RMSE 0.033 (0.029, 0.037) 0.058 (0.049, 0.065) 0.065 (0.058, 0.073) 1.042 (0.522, 1.685)

0.2
`RMSE 0.130 (0.118, 0.142) 0.182 (0.172, 0.188) 0.170 (0.156, 0.191) 2.481 (1.428, 3.807)
`OT + `RMSE 0.039 (0.035, 0.042) 0.086 (0.079, 0.095) 0.016 (0.006, 0.030) 2.403 (1.433, 3.768)
`CL + `RMSE 0.073 (0.066, 0.080) 0.131 (0.117, 0.149) 0.012 (0.006, 0.018) 1.681 (0.656, 2.682)

0.3
`RMSE 0.215 (0.204, 0.234) 0.291 (0.280, 0.305) 0.440 (0.425, 0.463) 3.580 (2.333, 4.866)
`OT + `RMSE 0.057 (0.052, 0.064) 0.123 (0.116, 0.135) 0.084 (0.062, 0.134) 3.453 (2.457, 4.782)
`CL + `RMSE 0.132 (0.111, 0.151) 0.241 (0.208, 0.285) 0.064 (0.045, 0.091) 1.894 (0.942, 3.108)

Table 1: Emulator performance on Lorenz-96 data with varying noise scale r = 0.1, 0.2, 0.3.
The median (25th, 75th percentile) of the evaluation metrics (Appendix C.1) are computed on 200
Lorenz-96 test instances (each with 1500 time steps) for the neural operator trained with (1) only
RMSE loss `RMSE; (2) optimal transport (OT) and RMSE loss `OT + `RMSE (using prior knowledge
to choose summary statistics); and (3) contrastive learning (CL) and RMSE loss `CL + `RMSE

(without prior knowledge). We show significant improvements on the long-term statistical metrics
including L1 histogram error of the chosen statistics S(u) := {

dui
dt

, (ui+1 � ui�2)ui�1, ui}; relative
error of Fourier energy spectrum; and absolute error of estimated fractal dimension (FD). For high
noise, OT and CL training also improve the leading Lyapunov exponent (LE) of the neural operator.

Training Histogram Error # Energy Spec. Error # Leading LE Error #

`RMSE 0.390 (0.325, 0.556) 0.290 (0.225, 0.402) 0.101 (0.069, 0.122)
`OT + `RMSE 0.172 (0.146, 0.197) 0.211 (0.188, 0.250) 0.094 (0.041, 0.127)
`CL + `RMSE 0.193 (0.148, 0.247) 0.176 (0.130, 0.245) 0.108 (0.068, 0.132)

Table 2: Emulator performance on Kuramoto–Sivashinsky data with noise scale r = 0.3. The
median (25th, 75th percentile) of the evaluation metrics (Appendix C.1) are computed on 200
Kuramoto–Sivashinsky test instances (each with 1000 time steps) for the neural operator trained
with (1) only RMSE loss `RMSE; (2) optimal transport (OT) and RMSE loss `OT + `RMSE (using
prior knowledge to choose summary statistics); and (3) contrastive learning (CL) and RMSE loss
`CL + `RMSE (without prior knowledge). We again show significant improvements in the long-term
statistical metrics including L1 histogram error of the chosen statistics S(u) := {

@u

@t
, @u

@x
, @

2
u

@x2 } and
relative error of Fourier energy spectrum. The fractal dimension (FD) is highly unstable in high
dimensions [48] and could not be estimated for this dataset.

Limitations. Because we rely on invariant measures, our current approach is limited to trajectory data
from attractors, i.e. we assume that the dynamics have reached an attractor and are not in a transient
phase. We also cannot handle explicit time dependence, including time-dependent forcing or control
parameters. For the optimal transport approach, choosing informative summary statistics based on
prior knowledge is key to good performance (Appendix B.3). For the contrastive learning approach,
the quality of the learned invariant statistics also depends on the diversity of the environments present
in the multi-environment setting, although our additional experiments show that we can still obtain
good performance even with minimal environment diversity (Appendix B.4).

Future work. In the future, we may be able to adapt our approaches to allow for mild time dependence
by restricting the time range over which we compute statistics and select positive pairs. This would
allow us to study slowly varying dynamics as well as sharp discrete transitions such as tipping points.
We can also improve the diversity of the data for contrastive learning by designing new augmentations
or using the training trajectory of the neural operator to generate more diverse negative pairs. We
will investigate generalizing our approaches to other difficult systems, such as stochastic differential
equations or stochastic PDEs, and we would like to further study the trade-offs and synergies between
focusing on short-term forecasting (RMSE) and capturing long-term behavior (invariant statistics).
In addition, we would like to investigate and compare training methods [22–24] across different
architectures.

Broader impacts. While better emulators for chaotic dynamics may be used in a wide range of
applications, we foresee no direct negative societal impacts.
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The term in the numerator enforces alignment of the positive pairs which ensures we obtain time-
invariant statistics, while the term in the numerator encourages uniformity, i.e. maximizing mutual
information between the data and the embedding, which ensures we can distinguish between negative
pairs from different trajectories [41]. This provides intuition for why our learned encoder f identifies
relevant time-invariant statistics that can distinguish different chaotic attractors.

Contrastive feature loss. To construct our feature loss, we use the cosine distance between a series
of features of the encoder network f [42]:

`CL

�
U, Û; f 

�
:=

X

l

cos
�
f l

 
(U), f l

 
(Û)

�
, (17)

where f l

 
gives the output the l-th layer of the neural network. The combined loss that we use for

training the neural operator is given by

`(✓) = E
n2{1,...,N}

I2{0,...,L�K}


� `CL

�
U

(n)

I:I+K
, Û(n)

I:h:I+K
; f 

�
+ `RMSE

�
U

(n)

I:I+K
, Û(n)

I:hRMSE:I+K

��
, (18)

where � > 0 is a hyperparameter.

4 Experiments

We evaluate our approach on the 1D chaotic Kuramoto–Sivanshinsky (KS) system and a finite-
dimensional Lorenz 96 system. In all cases, we ensure that the systems under investigation remain
in chaotic regimes. We demonstrate the effectiveness of our approach in preserving key statistics in
these unpredictable systems, showcasing our ability to handle the complex nature of chaotic systems.
The code is available at: https://github.com/roxie62/neural_operators_for_chaos.

Experimental setup. Our data consists of noisy observations u(t) with noise ⌘ ⇠ N (0, r2�2I),
where �2 is the temporal variance of the trajectory and r is a scaling factor. Baselines. We
primarily consider the baseline as training with RMSE [2]. We have additional baselines in Appendix
B, including Gaussian denoising and a Sobolev norm loss with dissipative regularization [16].
Backbones. We use the Fourier neural operator (FNO, [18]). Evaluation metrics. We use a variety
of statistics-based evaluation metrics and other measures that characterize the chaotic attractor. See
Appendix C.1 for details.

4.1 Lorenz-96

As is a common test model for climate systems, data assimilation, and other geophysical applications
[43–45], the Lorenz-96 system is a key tool for studying chaos theory, turbulence, and nonlinear
dynamical systems. It is described by the differential equation

dui

dt
= (ui+1 � ui�2)ui�1 � ui + F (19)

Its dynamics exhibit strong energy-conserving non-linearity, and for a large F � 10, it can exhibit
strong chaotic turbulence and symbolizes the inherent unpredictability of the Earth’s climate.

Experimental setup. When using optimal transport loss, we assume that expert knowledge is
derived from the underlying equation. For Lorenz-96, we define the relevant statistics as s(u) :=
{
dui
dt

, (ui+1 � ui�2)ui�1, ui}. We generate 2000 training data points with each �(n) randomly
sampled from a uniform distribution with the range [10.0, 18.0]. We vary the noise level r from
0.1 to 0.3 and show consistent improvement in the relevant statistics. Results. The results are
presented in Table 1, and predictions and invariant statistics are shown in Fig. 3 (refer to C.4 for more
visualizations).

4.2 Kuramoto–Sivashinsky

Known as a model for spatiotemporal chaos, Kuramoto–Sivashinsky (KS) has been widely used to
describe various physical phenomena, including fluid flows in pipes, plasma physics, and dynamics
of certain chemical reactions [46]. It captures wave steepening via the nonlinear term u@u

@x
, models

dispersion effects through @
2
u

@x2 , and manages discontinuities by introducing hyper-viscosity via @
4
u

@x4 :
@u

@t
= �u

@u

@x
� �

@2u

@x2
�

@4u

@x4
. (20)
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r Training Histogram Error # Energy Spec. Error # Leading LE Error # FD Error #

0.1
`RMSE 0.056 (0.051, 0.062) 0.083 (0.078, 0.090) 0.013 (0.006, 0.021) 1.566 (0.797, 2.309)
`OT + `RMSE 0.029 (0.027, 0.032) 0.058 (0.052, 0.064) 0.050 (0.040, 0.059) 1.424 (0.646, 2.315)
`CL + `RMSE 0.033 (0.029, 0.037) 0.058 (0.049, 0.065) 0.065 (0.058, 0.073) 1.042 (0.522, 1.685)

0.2
`RMSE 0.130 (0.118, 0.142) 0.182 (0.172, 0.188) 0.170 (0.156, 0.191) 2.481 (1.428, 3.807)
`OT + `RMSE 0.039 (0.035, 0.042) 0.086 (0.079, 0.095) 0.016 (0.006, 0.030) 2.403 (1.433, 3.768)
`CL + `RMSE 0.073 (0.066, 0.080) 0.131 (0.117, 0.149) 0.012 (0.006, 0.018) 1.681 (0.656, 2.682)

0.3
`RMSE 0.215 (0.204, 0.234) 0.291 (0.280, 0.305) 0.440 (0.425, 0.463) 3.580 (2.333, 4.866)
`OT + `RMSE 0.057 (0.052, 0.064) 0.123 (0.116, 0.135) 0.084 (0.062, 0.134) 3.453 (2.457, 4.782)
`CL + `RMSE 0.132 (0.111, 0.151) 0.241 (0.208, 0.285) 0.064 (0.045, 0.091) 1.894 (0.942, 3.108)

Table 1: Emulator performance on Lorenz-96 data with varying noise scale r = 0.1, 0.2, 0.3.
The median (25th, 75th percentile) of the evaluation metrics (Appendix C.1) are computed on 200
Lorenz-96 test instances (each with 1500 time steps) for the neural operator trained with (1) only
RMSE loss `RMSE; (2) optimal transport (OT) and RMSE loss `OT + `RMSE (using prior knowledge
to choose summary statistics); and (3) contrastive learning (CL) and RMSE loss `CL + `RMSE

(without prior knowledge). We show significant improvements on the long-term statistical metrics
including L1 histogram error of the chosen statistics S(u) := {

dui
dt

, (ui+1 � ui�2)ui�1, ui}; relative
error of Fourier energy spectrum; and absolute error of estimated fractal dimension (FD). For high
noise, OT and CL training also improve the leading Lyapunov exponent (LE) of the neural operator.

Training Histogram Error # Energy Spec. Error # Leading LE Error #

`RMSE 0.390 (0.325, 0.556) 0.290 (0.225, 0.402) 0.101 (0.069, 0.122)
`OT + `RMSE 0.172 (0.146, 0.197) 0.211 (0.188, 0.250) 0.094 (0.041, 0.127)
`CL + `RMSE 0.193 (0.148, 0.247) 0.176 (0.130, 0.245) 0.108 (0.068, 0.132)

Table 2: Emulator performance on Kuramoto–Sivashinsky data with noise scale r = 0.3. The
median (25th, 75th percentile) of the evaluation metrics (Appendix C.1) are computed on 200
Kuramoto–Sivashinsky test instances (each with 1000 time steps) for the neural operator trained
with (1) only RMSE loss `RMSE; (2) optimal transport (OT) and RMSE loss `OT + `RMSE (using
prior knowledge to choose summary statistics); and (3) contrastive learning (CL) and RMSE loss
`CL + `RMSE (without prior knowledge). We again show significant improvements in the long-term
statistical metrics including L1 histogram error of the chosen statistics S(u) := {

@u

@t
, @u

@x
, @

2
u

@x2 } and
relative error of Fourier energy spectrum. The fractal dimension (FD) is highly unstable in high
dimensions [48] and could not be estimated for this dataset.

Limitations. Because we rely on invariant measures, our current approach is limited to trajectory data
from attractors, i.e. we assume that the dynamics have reached an attractor and are not in a transient
phase. We also cannot handle explicit time dependence, including time-dependent forcing or control
parameters. For the optimal transport approach, choosing informative summary statistics based on
prior knowledge is key to good performance (Appendix B.3). For the contrastive learning approach,
the quality of the learned invariant statistics also depends on the diversity of the environments present
in the multi-environment setting, although our additional experiments show that we can still obtain
good performance even with minimal environment diversity (Appendix B.4).

Future work. In the future, we may be able to adapt our approaches to allow for mild time dependence
by restricting the time range over which we compute statistics and select positive pairs. This would
allow us to study slowly varying dynamics as well as sharp discrete transitions such as tipping points.
We can also improve the diversity of the data for contrastive learning by designing new augmentations
or using the training trajectory of the neural operator to generate more diverse negative pairs. We
will investigate generalizing our approaches to other difficult systems, such as stochastic differential
equations or stochastic PDEs, and we would like to further study the trade-offs and synergies between
focusing on short-term forecasting (RMSE) and capturing long-term behavior (invariant statistics).
In addition, we would like to investigate and compare training methods [22–24] across different
architectures.

Broader impacts. While better emulators for chaotic dynamics may be used in a wide range of
applications, we foresee no direct negative societal impacts.

10

The term in the numerator enforces alignment of the positive pairs which ensures we obtain time-
invariant statistics, while the term in the numerator encourages uniformity, i.e. maximizing mutual
information between the data and the embedding, which ensures we can distinguish between negative
pairs from different trajectories [41]. This provides intuition for why our learned encoder f identifies
relevant time-invariant statistics that can distinguish different chaotic attractors.

Contrastive feature loss. To construct our feature loss, we use the cosine distance between a series
of features of the encoder network f [42]:

`CL

�
U, Û; f 

�
:=

X

l

cos
�
f l

 
(U), f l

 
(Û)

�
, (17)

where f l

 
gives the output the l-th layer of the neural network. The combined loss that we use for

training the neural operator is given by

`(✓) = E
n2{1,...,N}

I2{0,...,L�K}


� `CL

�
U

(n)

I:I+K
, Û(n)

I:h:I+K
; f 

�
+ `RMSE

�
U

(n)

I:I+K
, Û(n)

I:hRMSE:I+K

��
, (18)

where � > 0 is a hyperparameter.

4 Experiments

We evaluate our approach on the 1D chaotic Kuramoto–Sivanshinsky (KS) system and a finite-
dimensional Lorenz 96 system. In all cases, we ensure that the systems under investigation remain
in chaotic regimes. We demonstrate the effectiveness of our approach in preserving key statistics in
these unpredictable systems, showcasing our ability to handle the complex nature of chaotic systems.
The code is available at: https://github.com/roxie62/neural_operators_for_chaos.

Experimental setup. Our data consists of noisy observations u(t) with noise ⌘ ⇠ N (0, r2�2I),
where �2 is the temporal variance of the trajectory and r is a scaling factor. Baselines. We
primarily consider the baseline as training with RMSE [2]. We have additional baselines in Appendix
B, including Gaussian denoising and a Sobolev norm loss with dissipative regularization [16].
Backbones. We use the Fourier neural operator (FNO, [18]). Evaluation metrics. We use a variety
of statistics-based evaluation metrics and other measures that characterize the chaotic attractor. See
Appendix C.1 for details.

4.1 Lorenz-96

As is a common test model for climate systems, data assimilation, and other geophysical applications
[43–45], the Lorenz-96 system is a key tool for studying chaos theory, turbulence, and nonlinear
dynamical systems. It is described by the differential equation

dui

dt
= (ui+1 � ui�2)ui�1 � ui + F (19)

Its dynamics exhibit strong energy-conserving non-linearity, and for a large F � 10, it can exhibit
strong chaotic turbulence and symbolizes the inherent unpredictability of the Earth’s climate.

Experimental setup. When using optimal transport loss, we assume that expert knowledge is
derived from the underlying equation. For Lorenz-96, we define the relevant statistics as s(u) :=
{
dui
dt

, (ui+1 � ui�2)ui�1, ui}. We generate 2000 training data points with each �(n) randomly
sampled from a uniform distribution with the range [10.0, 18.0]. We vary the noise level r from
0.1 to 0.3 and show consistent improvement in the relevant statistics. Results. The results are
presented in Table 1, and predictions and invariant statistics are shown in Fig. 3 (refer to C.4 for more
visualizations).

4.2 Kuramoto–Sivashinsky

Known as a model for spatiotemporal chaos, Kuramoto–Sivashinsky (KS) has been widely used to
describe various physical phenomena, including fluid flows in pipes, plasma physics, and dynamics
of certain chemical reactions [46]. It captures wave steepening via the nonlinear term u@u

@x
, models

dispersion effects through @
2
u

@x2 , and manages discontinuities by introducing hyper-viscosity via @
4
u

@x4 :
@u

@t
= �u

@u

@x
� �

@2u

@x2
�

@4u

@x4
. (20)
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especially in higher dimensions. A common approximation made to speed up computation is to
introduce an entropy regularization term, resulting in a convex relaxation of the original optimal
transport problem:

1

2
W �(S, Ŝ)2 := min

T2⇧

X

i,j

TijCij � � h(T ), (12)

where h(T ) = �
P

i,j
Tij log Tij is the entropy of the transport map. This entropy-regularized

optimal transport problem can be solved efficiently using the Sinkhorn algorithm [31].

As � ! 0, the entropy-regularized Wasserstein distance W �
! W 0 = W reduces to the exact

Wasserstein distance (11). For � > 0, we can further correct for an entropic bias to obtain the
Sinkhorn divergence [39, 40]

`OT(S, Ŝ) =
1

2
W

�

(S, Ŝ)2 :=
1

2

 
W �(S, Ŝ)2 �

W �(S,S)2 + W �(Ŝ, Ŝ)2

2

!
, (13)

which gives us our optimal transport loss. Combined with relative root mean squared error (RMSE)

`RMSE(U, Û) :=
1

K + 1

X

ut,ût2U,Û

kut � ûtk2

kutk2
(14)

for short-term prediction consistency [2, 16, 18], our final loss function is

`(✓) = E
n2{1,...,N}

I2{0,...,L�K}


↵ `OT

�
S
(n)

I:I+K
, Ŝ(n)

I:h:I+K

�
+ `RMSE

�
U

(n)

I:I+K
, Û(n)

I:hRMSE:I+K

��
, (15)

where S
(n)

I:I+K
:=

�
s(u) | u 2 U

(n)

I,I+K

 
, Ŝ(n)

I:h:I+K
:=

�
s(û) | û 2 Û

(n)

I:h:I+K

 
, and ↵ > 0 is a

hyperparameter. Note that Ŝ(n)

I:h:I+K
and Û

(n)

I:hRMSE:I+K
implicitly depend on weights ✓.

3.2 Contrastive feature learning

When there is an absence of prior knowledge pertaining to the underlying dynamical system, or
when the statistical attributes are not easily differentiable, we propose an alternative contrastive
learning-based approach to learn the relevant invariant statistics directly from the data. We first
use contrastive learning to train an encoder to capture invariant statistics of the dynamics in the
multi-environment setting. We then leverage the feature map derived from this encoder to construct a
feature loss that preserves the learned invariant statistics during neural operator training.

Contrastive learning. The objective of self-supervised learning is to train an encoder f (U) (with
parameters  ) to compute relevant invariant statistics of the dynamics from sequences U with
fixed length K + 1. We do not explicitly train on the environment parameters � but rather use a
general-purpose contrastive learning approach that encourages the encoder f to learn a variety of
time-invariant features that are able to distinguish between sequences from different trajectories (and
therefore different �).

A contrastive learning framework using the Noise Contrastive Estimation (InfoNCE) loss has been
shown to preserve context-aware information by training to match sets of positive pairs while treating
all other combinations as negative pairs [32]. The selection of positive pairs is pivotal to the success
of contrastive learning. In our approach, the key premise is that two sequences U(n)

I:I+K
, U(n)

J:J+K

from the same trajectory U
(n)

0:L
both sample the same chaotic attractor, i.e. their statistics should be

similar, so we treat any such pair of sequences as positive pairs. Two sequences U(n)

I:I+K
, U(m)

H:H+K

from different trajectories are treated as negative pairs. This allows us to formulate the InfoNCE loss
as:

`InfoNCE( ; ⌧) :=

E
n2{1,...,N}

I,J2{0,...,L�K}

2
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B.5 Maximum mean discrepancy (MMD) vs. optimal transport loss

We also implement a variant of our optimal transport approach that uses maximum mean discrepancy
(MMD) as a distributional distance rather than the Sinkhorn divergence. Using the same set of
summary statistics, we find that MMD does not perform as well as our optimal transport loss for
training emulators (Table 9).

Training Histogram Error # Energy Spec. Error # Leading LE Error #

`RMSE 0.390 (0.325, 0.556) 0.290 (0.225, 0.402) 0.101 (0.069, 0.122)
`MMD + `RMSE 0.245 (0.218, 0.334) 0.216 (0.186, 0.272) 0.101 (0.058, 0.125)
`OT + `RMSE 0.172 (0.146, 0.197) 0.211 (0.188, 0.250) 0.094 (0.041, 0.127)
`CL + `RMSE 0.193 (0.148, 0.247) 0.176 (0.130, 0.245) 0.108 (0.068, 0.132)

Table 9: Emulator performance (including MMD loss) on Kuramoto–Sivashinsky data with
noise scale r = 0.3. The median (25th, 75th percentile) of the evaluation metrics are computed
on 200 Kuramoto–Sivashinsky test instances (each with 1000 time steps) for the neural operator
trained with (1) only RMSE loss `RMSE; (2) maximum mean discrepency (MMD) and RMSE loss
`MMD + `RMSE; (3) optimal transport (OT) and RMSE loss `OT + `RMSE; and (4) contrastive
learning (CL) and RMSE loss `CL + `RMSE.

B.6 Additional Lyapunov spectrum evaluation metrics

In the table 10, we evaluated the results of Lorenz 96 on Lyapunov spectrum error rates and the total
number of positive Lyapunov exponents error rates. For the Lyapunov spectrum error, we report
the sum of relative absolute errors across the full spectrum:

P
d

i
|�̂i � �i|/�i, where �i is the i-th

Lyapunov exponent and d is the dimension of the dynamical state. As suggested by [50], we also
compare the number of positive Lyapunov exponents (LEs) as an additional statistic to measure the
complexity of the chaotic dynamics. We compute the absolute error in the number of positive LEsP

d

i
|1(�̂i > 0 � 1(�i > 0)|.

r Training Leading LE Error # Lyapunov Spectrum Error # Total number of positive LEs Error #

0.1
`RMSE 0.013 (0.006, 0.021) 0.265 (0.110, 0.309) 0.500 (0.000, 1.000)
`OT + `RMSE 0.050 (0.040, 0.059) 0.248 (0.168, 0.285) 0.000 (0.000, 1.000)
`CL + `RMSE 0.065 (0.058, 0.073) 0.227 (0.164, 0.289) 0.000 (0.000, 1.000)

0.2
`RMSE 0.170 (0.156, 0.191) 0.612 (0.522, 0.727) 4.000 (4.000, 5.000)
`OT + `RMSE 0.016 (0.006, 0.030) 0.513 (0.122, 0.590) 3.000 (2.000, 3.000)
`CL + `RMSE 0.012 (0.006, 0.018) 0.459 (0.138, 0.568) 3.000 (2.000, 3.000)

0.3
`RMSE 0.440 (0.425, 0.463) 0.760 (0.702, 0.939) 7.000 (7.000, 8.000)
`OT + `RMSE 0.084 (0.062, 0.134) 0.661 (0.572, 0.746) 5.000 (4.000, 6.000)
`CL + `RMSE 0.064 (0.045, 0.091) 0.654 (0.558, 0.780) 6.000 (5.000, 6.000)

Table 10: Emulator performance on Lyapunov spectrum metrics for Lorenz-96 data. The
median (25th, 75th percentile) of the Lyapunov spectrum metrics are computed on 200 Lorenz-96
test instances (each with 1500 time steps) for the neural operator trained with (1) only RMSE loss
`RMSE; (2) optimal transport (OT) and RMSE loss `OT + `RMSE; and (3) contrastive learning (CL)
and RMSE loss `CL + `RMSE. In the presence of high noise, OT and CL give lower relative errors on
the leading Lyapunov exponent (LE). When evaluating the full Lyapunov spectrum, OT and CL show
significant advantages than the baseline. In addition, the lower absolute errors of the total number of
the positive Lyapunov exponents (LEs) suggest that OT and CL are able to match the complexity of
the true chaotic dynamics.
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Training Histogram Error # Energy Spec. Error # Leading LE Error #

`RMSE 0.390 (0.325, 0.556) 0.290 (0.225, 0.402) 0.101 (0.069, 0.122)
`Sobolev + `dissipative 0.427 (0.289, 0.616) 0.237 (0.204, 0.315) 0.023 (0.012, 0.047)
`OT + `RMSE 0.172 (0.146, 0.197) 0.211 (0.188, 0.250) 0.094 (0.041, 0.127)
`CL + `RMSE 0.193 (0.148, 0.247) 0.176 (0.130, 0.245) 0.108 (0.068, 0.132)

Table 6: Emulator performance (including Sobolev norm loss) on Kuramoto–Sivashinsky data
with noise scale r = 0.3. The median (25th, 75th percentile) of the evaluation metrics are computed
on 200 Kuramoto–Sivashinsky test instances (each with 1000 time steps) for the neural operator
trained with (1) only RMSE loss `RMSE; (2) Sobolev norm loss with dissipative regularization
`Sobolev + `dissaptive; (3) optimal transport (OT) and RMSE loss `OT + `RMSE; and (4) contrastive
learning (CL) and RMSE loss `CL + `RMSE.

B.3 Optimal transport: reduced set of summary statistics

For our optimal transport approach, we test a reduced set of summary statistics, which shows how the
quality of the summary statistic affects the performance of the method (Table 7). With an informative
summary statistic, we find even a reduced set can still be helpful but, for a non-informative statistic,
the optimal transport method fails as expected.

Training statistics Histogram Error # Energy Spec. Error # Leading LE Error # FD Error #

S (full) 0.057 (0.052, 0.064) 0.123 (0.116, 0.135) 0.084 (0.062, 0.134) 3.453 (2.457, 4.782)
S1 (partial) 0.090 (0.084, 0.098) 0.198 (0.189, 0.208) 0.263 (0.217, 0.323) 3.992 (2.543, 5.440)
S2 (minimum) 0.221 (0.210, 0.234) 0.221 (0.210, 0.230) 0.276 (0.258, 0.291) 3.204 (2.037, 4.679)

Table 7: Emulator performance for different choices of summary statistics on Lorenz-96
data with noise scale r = 0.3. Each neural operator was trained using the optimal transport and
RMSE loss using (1) full statistics S(u) := {

dui
dt

, (ui+1 � ui�2)ui�1, ui}; (2) partial statistics
S1(u) := {(ui+1 � ui�2)ui�1}; or (3) minimum statistics S2(u) := {ū}, where ū is the spatial
average.

B.4 Contrastive learning: reduced environment diversity

For our contrastive learning approach, we test a multi-environment setting with reduced data diversity
and find that the contrastive method still performs well under the reduced conditions (Table 8), which
demonstrates robustness.

Training Histogram Error # Energy Spec. Error # Leading LE Error # FD Error #

`RMSE 0.255 (0.248, 0.263) 0.307 (0.302, 0.315) 0.459 (0.743, 2.746) 3.879 (2.456, 5.076)
`OT + `RMSE 0.055 (0.050, 0.061) 0.124 (0.116, 0.131) 0.080 (0.045, 0.109) 4.015 (2.401, 5.225)
`CL + `RMSE 0.130 (0.111, 0.152) 0.193 (0.183, 0.200) 0.031 (0.014, 0.053) 1.747 (0.792, 2.939)

Table 8: Emulator performance with reduced environment diversity (i.e. narrower parameter
range) on Lorenz-96 data with noise level r = 0.3. Averaging over 200 testing instances, we show
the performance of training the neural operator with (1) only RMSE loss `RMSE; (2) optimal transport
(OT) and RMSE loss `OT + `RMSE; and (3) contrastive learning (CL) and RMSE loss `CL + `RMSE.
We shrink the parameter range for generating the dataset from [10, 18] to [16, 18].
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B.5 Maximum mean discrepancy (MMD) vs. optimal transport loss

We also implement a variant of our optimal transport approach that uses maximum mean discrepancy
(MMD) as a distributional distance rather than the Sinkhorn divergence. Using the same set of
summary statistics, we find that MMD does not perform as well as our optimal transport loss for
training emulators (Table 9).

Training Histogram Error # Energy Spec. Error # Leading LE Error #

`RMSE 0.390 (0.325, 0.556) 0.290 (0.225, 0.402) 0.101 (0.069, 0.122)
`MMD + `RMSE 0.245 (0.218, 0.334) 0.216 (0.186, 0.272) 0.101 (0.058, 0.125)
`OT + `RMSE 0.172 (0.146, 0.197) 0.211 (0.188, 0.250) 0.094 (0.041, 0.127)
`CL + `RMSE 0.193 (0.148, 0.247) 0.176 (0.130, 0.245) 0.108 (0.068, 0.132)

Table 9: Emulator performance (including MMD loss) on Kuramoto–Sivashinsky data with
noise scale r = 0.3. The median (25th, 75th percentile) of the evaluation metrics are computed
on 200 Kuramoto–Sivashinsky test instances (each with 1000 time steps) for the neural operator
trained with (1) only RMSE loss `RMSE; (2) maximum mean discrepency (MMD) and RMSE loss
`MMD + `RMSE; (3) optimal transport (OT) and RMSE loss `OT + `RMSE; and (4) contrastive
learning (CL) and RMSE loss `CL + `RMSE.

B.6 Additional Lyapunov spectrum evaluation metrics

In the table 10, we evaluated the results of Lorenz 96 on Lyapunov spectrum error rates and the total
number of positive Lyapunov exponents error rates. For the Lyapunov spectrum error, we report
the sum of relative absolute errors across the full spectrum:

P
d

i
|�̂i � �i|/�i, where �i is the i-th

Lyapunov exponent and d is the dimension of the dynamical state. As suggested by [50], we also
compare the number of positive Lyapunov exponents (LEs) as an additional statistic to measure the
complexity of the chaotic dynamics. We compute the absolute error in the number of positive LEsP

d

i
|1(�̂i > 0 � 1(�i > 0)|.

r Training Leading LE Error # Lyapunov Spectrum Error # Total number of positive LEs Error #

0.1
`RMSE 0.013 (0.006, 0.021) 0.265 (0.110, 0.309) 0.500 (0.000, 1.000)
`OT + `RMSE 0.050 (0.040, 0.059) 0.248 (0.168, 0.285) 0.000 (0.000, 1.000)
`CL + `RMSE 0.065 (0.058, 0.073) 0.227 (0.164, 0.289) 0.000 (0.000, 1.000)

0.2
`RMSE 0.170 (0.156, 0.191) 0.612 (0.522, 0.727) 4.000 (4.000, 5.000)
`OT + `RMSE 0.016 (0.006, 0.030) 0.513 (0.122, 0.590) 3.000 (2.000, 3.000)
`CL + `RMSE 0.012 (0.006, 0.018) 0.459 (0.138, 0.568) 3.000 (2.000, 3.000)

0.3
`RMSE 0.440 (0.425, 0.463) 0.760 (0.702, 0.939) 7.000 (7.000, 8.000)
`OT + `RMSE 0.084 (0.062, 0.134) 0.661 (0.572, 0.746) 5.000 (4.000, 6.000)
`CL + `RMSE 0.064 (0.045, 0.091) 0.654 (0.558, 0.780) 6.000 (5.000, 6.000)

Table 10: Emulator performance on Lyapunov spectrum metrics for Lorenz-96 data. The
median (25th, 75th percentile) of the Lyapunov spectrum metrics are computed on 200 Lorenz-96
test instances (each with 1500 time steps) for the neural operator trained with (1) only RMSE loss
`RMSE; (2) optimal transport (OT) and RMSE loss `OT + `RMSE; and (3) contrastive learning (CL)
and RMSE loss `CL + `RMSE. In the presence of high noise, OT and CL give lower relative errors on
the leading Lyapunov exponent (LE). When evaluating the full Lyapunov spectrum, OT and CL show
significant advantages than the baseline. In addition, the lower absolute errors of the total number of
the positive Lyapunov exponents (LEs) suggest that OT and CL are able to match the complexity of
the true chaotic dynamics.
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B Additional Experiments and Evaluation Metrics

We have performed several additional experiments that act as points of comparison, help us better
understand the behavior of our methods under a variety of conditions, and provide useful insights for
future applications of our approaches.

B.1 Denoising with Gaussian blurring

Gaussian blurring, often used as a denoising technique for images, employs a Gaussian distribu-
tion to establish a convolution matrix that’s applied to the original image. The fundamental idea
involves substituting the noisy pixel with a weighted average of surrounding pixel values. A key
hyperparameter in Gaussian blurring is the standard deviation of the Gaussian distribution. When the
standard deviation approaches zero, it fundamentally indicates the absence of any blur. Under such
circumstances, the Gaussian function collapses to a single point, leading to the elimination of the
blur effect. In Table 4, we present the results from applying Gaussian blurring to noisy data during
training based solely on RMSE. Despite the effectiveness of the widely adopted denoising approach,
our findings indicate that Gaussian blurring may not be ideally suited for our purpose of emulating
dynamics. This is primarily because significant invariant statistics might be strongly correlated with
certain high-frequency signals that could be affected by the blurring preprocessing.

Training Histogram Error # Energy Spec. Error# Leading LE Error #

`RMSE (�b = 0.1) 0.390 (0.326, 0.556) 0.290 (0.226, 0.402) 0.098 (0.069, 0.127)
`RMSE (�b = 0.5) 1.011 (0.788, 1.264) 0.493 (0.379, 0.623) 0.098 (0.041, 0.427)
`RMSE 0.390 (0.325, 0.556) 0.290 (0.225, 0.402) 0.101 (0.069, 0.122)

Table 4: Emulator performance with Gaussian blurring on Kuramoto–Sivashinsky data with
noise scale r = 0.3. Averaging over 200 testing instances with varying �(n), we show the performance
of (1) the application of Gaussian blurring as a preliminary denoising effort with a small standard
deviation (�b = 0.1); (2) the application of Gaussian blurring with a larger standard deviation
(�b = 0.5); and (3) training purely on RMSE without any blurring preprocessing. The results suggest
that the application of Gaussian blurring might further degrade the results, as the high-frequency
signals associated with invariant statistics can be lost.

B.2 Sobolev norm baseline

We recognize that there are alternative methods that strive to capture high-frequency signals by
modifying training objectives. For instance, the Sobolev norm, which combines data and its deriva-
tives, has been found to be quite effective in capturing high-frequency signals [16, 49]. However,
its effectiveness can be significantly curtailed in a noisy environment, especially when noise is
introduced to a high-frequency domain, as minimizing the Sobolev norm then fails to accurately
capture relevant statistics, as shown in Tables 5 and 6.

Training Histogram Error # Energy Spec. Error # Leading LE Error # FD Error #

`RMSE 0.215 (0.204, 0.234) 0.291 (0.280, 0.305) 0.440 (0.425, 0.463) 3.580 (2.333, 4.866)
`Sobolev+`dissaptive 0.246 (0.235, 0.255) 0.325 (0.341, 0.307) 0.487 (0.456, 0.545) 4.602 (3.329, 6.327)
`OT + `RMSE 0.057 (0.052, 0.064) 0.123 (0.116, 0.135) 0.084 (0.062, 0.134) 3.453 (2.457, 4.782)
`CL + `RMSE 0.132 (0.111, 0.151) 0.241 (0.208, 0.285) 0.064 (0.045, 0.091) 1.894 (0.942, 3.108)

Table 5: Emulator performance (including Sobolev norm loss) on Lorenz-96 data with noise
scale r = 0.3. The median (25th, 75th percentile) of the evaluation metrics are computed on 200
Lorenz-96 test instances (each with 1500 time steps) for the neural operator trained with (1) only
RMSE loss `RMSE; (2) Sobolev norm loss with dissipative regularization `Sobolev + `dissaptive; (3)
optimal transport (OT) and RMSE loss `OT + `RMSE; and (4) contrastive learning (CL) and RMSE
loss `CL + `RMSE.
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r Training Histogram Error # Energy Spec. Error # Leading LE Error # FD Error #

0.1
`RMSE 0.056 (0.051, 0.062) 0.083 (0.078, 0.090) 0.013 (0.006, 0.021) 1.566 (0.797, 2.309)
`OT + `RMSE 0.029 (0.027, 0.032) 0.058 (0.052, 0.064) 0.050 (0.040, 0.059) 1.424 (0.646, 2.315)
`CL + `RMSE 0.033 (0.029, 0.037) 0.058 (0.049, 0.065) 0.065 (0.058, 0.073) 1.042 (0.522, 1.685)

0.2
`RMSE 0.130 (0.118, 0.142) 0.182 (0.172, 0.188) 0.170 (0.156, 0.191) 2.481 (1.428, 3.807)
`OT + `RMSE 0.039 (0.035, 0.042) 0.086 (0.079, 0.095) 0.016 (0.006, 0.030) 2.403 (1.433, 3.768)
`CL + `RMSE 0.073 (0.066, 0.080) 0.131 (0.117, 0.149) 0.012 (0.006, 0.018) 1.681 (0.656, 2.682)

0.3
`RMSE 0.215 (0.204, 0.234) 0.291 (0.280, 0.305) 0.440 (0.425, 0.463) 3.580 (2.333, 4.866)
`OT + `RMSE 0.057 (0.052, 0.064) 0.123 (0.116, 0.135) 0.084 (0.062, 0.134) 3.453 (2.457, 4.782)
`CL + `RMSE 0.132 (0.111, 0.151) 0.241 (0.208, 0.285) 0.064 (0.045, 0.091) 1.894 (0.942, 3.108)

Table 1: Emulator performance on Lorenz-96 data with varying noise scale r = 0.1, 0.2, 0.3.
The median (25th, 75th percentile) of the evaluation metrics (Appendix C.1) are computed on 200
Lorenz-96 test instances (each with 1500 time steps) for the neural operator trained with (1) only
RMSE loss `RMSE; (2) optimal transport (OT) and RMSE loss `OT + `RMSE (using prior knowledge
to choose summary statistics); and (3) contrastive learning (CL) and RMSE loss `CL + `RMSE

(without prior knowledge). We show significant improvements on the long-term statistical metrics
including L1 histogram error of the chosen statistics S(u) := {

dui
dt

, (ui+1 � ui�2)ui�1, ui}; relative
error of Fourier energy spectrum; and absolute error of estimated fractal dimension (FD). For high
noise, OT and CL training also improve the leading Lyapunov exponent (LE) of the neural operator.

Training Histogram Error # Energy Spec. Error # Leading LE Error #

`RMSE 0.390 (0.325, 0.556) 0.290 (0.225, 0.402) 0.101 (0.069, 0.122)
`OT + `RMSE 0.172 (0.146, 0.197) 0.211 (0.188, 0.250) 0.094 (0.041, 0.127)
`CL + `RMSE 0.193 (0.148, 0.247) 0.176 (0.130, 0.245) 0.108 (0.068, 0.132)

Table 2: Emulator performance on Kuramoto–Sivashinsky data with noise scale r = 0.3. The
median (25th, 75th percentile) of the evaluation metrics (Appendix C.1) are computed on 200
Kuramoto–Sivashinsky test instances (each with 1000 time steps) for the neural operator trained
with (1) only RMSE loss `RMSE; (2) optimal transport (OT) and RMSE loss `OT + `RMSE (using
prior knowledge to choose summary statistics); and (3) contrastive learning (CL) and RMSE loss
`CL + `RMSE (without prior knowledge). We again show significant improvements in the long-term
statistical metrics including L1 histogram error of the chosen statistics S(u) := {

@u

@t
, @u

@x
, @

2
u

@x2 } and
relative error of Fourier energy spectrum. The fractal dimension (FD) is highly unstable in high
dimensions [48] and could not be estimated for this dataset.

Limitations. Because we rely on invariant measures, our current approach is limited to trajectory data
from attractors, i.e. we assume that the dynamics have reached an attractor and are not in a transient
phase. We also cannot handle explicit time dependence, including time-dependent forcing or control
parameters. For the optimal transport approach, choosing informative summary statistics based on
prior knowledge is key to good performance (Appendix B.3). For the contrastive learning approach,
the quality of the learned invariant statistics also depends on the diversity of the environments present
in the multi-environment setting, although our additional experiments show that we can still obtain
good performance even with minimal environment diversity (Appendix B.4).

Future work. In the future, we may be able to adapt our approaches to allow for mild time dependence
by restricting the time range over which we compute statistics and select positive pairs. This would
allow us to study slowly varying dynamics as well as sharp discrete transitions such as tipping points.
We can also improve the diversity of the data for contrastive learning by designing new augmentations
or using the training trajectory of the neural operator to generate more diverse negative pairs. We
will investigate generalizing our approaches to other difficult systems, such as stochastic differential
equations or stochastic PDEs, and we would like to further study the trade-offs and synergies between
focusing on short-term forecasting (RMSE) and capturing long-term behavior (invariant statistics).
In addition, we would like to investigate and compare training methods [22–24] across different
architectures.

Broader impacts. While better emulators for chaotic dynamics may be used in a wide range of
applications, we foresee no direct negative societal impacts.
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Training Histogram Error # Energy Spec. Error # Leading LE Error #

`RMSE 0.390 (0.325, 0.556) 0.290 (0.225, 0.402) 0.101 (0.069, 0.122)
`Sobolev + `dissipative 0.427 (0.289, 0.616) 0.237 (0.204, 0.315) 0.023 (0.012, 0.047)
`OT + `RMSE 0.172 (0.146, 0.197) 0.211 (0.188, 0.250) 0.094 (0.041, 0.127)
`CL + `RMSE 0.193 (0.148, 0.247) 0.176 (0.130, 0.245) 0.108 (0.068, 0.132)

Table 6: Emulator performance (including Sobolev norm loss) on Kuramoto–Sivashinsky data
with noise scale r = 0.3. The median (25th, 75th percentile) of the evaluation metrics are computed
on 200 Kuramoto–Sivashinsky test instances (each with 1000 time steps) for the neural operator
trained with (1) only RMSE loss `RMSE; (2) Sobolev norm loss with dissipative regularization
`Sobolev + `dissaptive; (3) optimal transport (OT) and RMSE loss `OT + `RMSE; and (4) contrastive
learning (CL) and RMSE loss `CL + `RMSE.

B.3 Optimal transport: reduced set of summary statistics

For our optimal transport approach, we test a reduced set of summary statistics, which shows how the
quality of the summary statistic affects the performance of the method (Table 7). With an informative
summary statistic, we find even a reduced set can still be helpful but, for a non-informative statistic,
the optimal transport method fails as expected.

Training statistics Histogram Error # Energy Spec. Error # Leading LE Error # FD Error #

S (full) 0.057 (0.052, 0.064) 0.123 (0.116, 0.135) 0.084 (0.062, 0.134) 3.453 (2.457, 4.782)
S1 (partial) 0.090 (0.084, 0.098) 0.198 (0.189, 0.208) 0.263 (0.217, 0.323) 3.992 (2.543, 5.440)
S2 (minimum) 0.221 (0.210, 0.234) 0.221 (0.210, 0.230) 0.276 (0.258, 0.291) 3.204 (2.037, 4.679)

Table 7: Emulator performance for different choices of summary statistics on Lorenz-96
data with noise scale r = 0.3. Each neural operator was trained using the optimal transport and
RMSE loss using (1) full statistics S(u) := {

dui
dt

, (ui+1 � ui�2)ui�1, ui}; (2) partial statistics
S1(u) := {(ui+1 � ui�2)ui�1}; or (3) minimum statistics S2(u) := {ū}, where ū is the spatial
average.

B.4 Contrastive learning: reduced environment diversity

For our contrastive learning approach, we test a multi-environment setting with reduced data diversity
and find that the contrastive method still performs well under the reduced conditions (Table 8), which
demonstrates robustness.

Training Histogram Error # Energy Spec. Error # Leading LE Error # FD Error #

`RMSE 0.255 (0.248, 0.263) 0.307 (0.302, 0.315) 0.459 (0.743, 2.746) 3.879 (2.456, 5.076)
`OT + `RMSE 0.055 (0.050, 0.061) 0.124 (0.116, 0.131) 0.080 (0.045, 0.109) 4.015 (2.401, 5.225)
`CL + `RMSE 0.130 (0.111, 0.152) 0.193 (0.183, 0.200) 0.031 (0.014, 0.053) 1.747 (0.792, 2.939)

Table 8: Emulator performance with reduced environment diversity (i.e. narrower parameter
range) on Lorenz-96 data with noise level r = 0.3. Averaging over 200 testing instances, we show
the performance of training the neural operator with (1) only RMSE loss `RMSE; (2) optimal transport
(OT) and RMSE loss `OT + `RMSE; and (3) contrastive learning (CL) and RMSE loss `CL + `RMSE.
We shrink the parameter range for generating the dataset from [10, 18] to [16, 18].
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