

Training Machine Learning Emulators

to Preserve Invariant Measures of Chaotic Attractors

Problem: Why is it difficult to train emulators for chaos?

New Methods: How do we train emulators to capture chaos?

What are emulators?

Dynamical Systems

$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = G(\mathbf{u},\phi)$

ERA5, lead time = 0 hours

https://github.com/NVlabs/FourCastNet

Machine Learning Emulators

Emulators are machine learning models trained to **simulate physical systems**.

 $(\hat{\mathbf{u}}_0, \phi) - \hat{g}_{\theta} \rightarrow \hat{\mathbf{U}}$

Emulators often consist of a **physics-informed architecture** trained on **observed or simulated data**.

Machine Learning Emulators

Emulators are machine learning models trained to **simulate physical systems**.

Emulators often consist of a **physics-informed architecture** trained on **observed or simulated data**.

Pathak et al. arXiv:2202.11214

Machine Learning Emulators

Accelerate expensive numerical simulations: fast predictions, fast sampling for uncertainty quantification

Improve existing physical models using data: more accurate predictions, better scientific understanding

Solve inverse problems (simulation-based inference): parameter estimation, state reconstruction

Why is it difficult to train emulators for chaos?

Chaotic Dynamics

A key feature of chaos is **sensitivity to initial conditions**.

Simple example: Lorenz-63

Chaotic Dynamics

A key feature of chaos is **sensitivity to initial conditions**.

Simple example: Lorenz-63

Chaotic Dynamics

A key feature of chaos is **sensitivity to initial conditions**.

Simple example: Lorenz-63

Chaotic Dynamics & Noise

Training emulators for chaotic dynamics is hard because **chaos is fundamentally unpredictable**.

Noise makes this worse due to sensitivity to initial conditions.

→ Instead of short-term forecasts, focus on **long-term statistics**.

Example: Weather vs. Climate

https://www.bbc.com/news/world-us-canada-47071683

Temperature change in the last 50 years

2011-2021 average vs 1956-1976 baseline -1.0 -0.5 -0.2 +0.2 +0.5 +1.0 +2.0 +4.0 °C -1.8 -0.9 -0.4 +0.4 +0.9 +1.8 +3.6 +7.2 °F

Accurate short-term forecasting ≠ Correct long-term statistics!

Accurate short-term forecasting ≠ Correct long-term statistics!

Accurate short-term forecasting ≠ Correct long-term statistics!

Accurate short-term forecasting ≠ Correct long-term statistics!

Preview of results on noisy data:

Training on short-term RMSE

vs. Training using *invariant statistics*

Original trajectory $U_G(u_0)$

Noisy initial conditions $U_G(u_0 + \eta)$

Noisy IC & measurements

$$U_G(u_0 + \eta) + \eta$$

Original trajectory $U_G(u_0)$

Noisy initial conditions $U_G(u_0 + \eta)$

Noisy IC & measurements

$$U_G(u_0 + \eta) + \eta$$

How does increasing noise η affect error metrics?

1.4

 $1.2 \cdot$

1.0

 $U_G(u_0)$

Noisy initial conditions $U_G(u_0 + \eta)$

Noisy IC & measurements $U_G(u_0+\eta)+\eta$

Original trajectory

 $U_G(u_0)$

Noisy initial conditions $U_G(u_0 + \eta)$

Noisy IC & measurements $U_G(u_0+\eta)+\eta$

Original trajectory

 $U_G(u_0)$

Noisy initial conditions $U_G(u_0 + \eta)$

Noisy IC & measurements

$$U_G(u_0 + \eta) + \eta$$

Original trajectory

 $U_G(u_0)$

Noisy initial conditions $U_G(u_0 + \eta)$

Noisy IC & measurements

$$U_G(u_0 + \eta) + \eta$$

How do we train emulators to capture chaos?

Recent Work

Zongyi Li et al. NeurIPS 2022

U

proposed Sobolev norm and dissipative regularization.

Jason A. Platt et al. Chaos (2023)

proposed enforcing dynamical invariants in reservoir computers.

Using Known Summary Statistics

For **high-dimensional problems**, we cannot explicitly match the attractor measure.

Using Known Summary Statistics

For **high-dimensional problems**, we cannot explicitly match the attractor measure.

Instead, we can use **Sinkhorn divergence** (~ Wasserstein **optimal transport** distance) to match **known summary statistics**.

1. Using Known Summary Statistics

For high-dimensional problems, we cannot explicitly match the

What if we don't know the relevant statistics?

Representation learning aims to automatically discover **representations** or **features** that characterize a dataset.

• Useful for dimensionality reduction, downstream tasks, and sometimes interpretability.

Representation learning aims to automatically discover **representations** or **features** that characterize a dataset.

• Useful for **dimensionality reduction**, **downstream tasks**, and sometimes **interpretability**.

Scientists have always been doing representation learning!

- The world is inherently high-dimensional.
- What we call "scientific understanding" is a low-dimensional description.

What if we don't know the relevant statistics?

Classical Manifold Learning (popular for data visualization)

- PCA, MDS, Isomap, t-SNE, UMAP, LLE
- Diffusion maps, Laplacian eigenmaps

Low-dimensional embedding

Unsupervised/Self-Supervised Learning

(popular in computer vision & natural language processing)

- Autoencoders, variational autoencoders
- Contrastive learning, CLIP

NDR

(Manifold Learning)

What if we don't know the relevant statistics?

- **Classical Manifold Learning** (popular for data visualization)
- PCA, MDS, Isomap, t-SNE, UMAP, LLE
- Diffusion maps, Laplacian eigenmaps

Low-dimensional embedding

Unsupervised/Self-Supervised Learning

(popular in computer vision & natural language processing)

- Autoencoders, variational autoencoders
- Contrastive learning, CLIP

Learning Invariant Statistics from Data

Without prior knowledge, we can use contrastive learning in a multi-environment setting to learn relevant invariant statistics.

Training Emulators on Chaotic Dynamics

Optimal Transport (OT):

- 1. Choose summary statistics via expert knowledge
- 2. Train w/ RMSE + OT Sinkhorn loss

Contrastive Learning (CL):

- 1. Learn invariant statistics via contrastive learning
- 2. Train w/ RMSE + CL feature loss

∂u	∂u	$_{\downarrow}\partial^{2}u$	$\partial^4 u$
$\overline{\partial t}$ =	$= -u \frac{\partial x}{\partial x} - u \frac{\partial x}{\partial x}$	$\phi \overline{\partial x^2}$ -	$\overline{\partial x^4}$

Training	Histogram Error \downarrow
$ \begin{array}{l} \ell_{\rm RMSE} \\ \ell_{\rm OT} + \ell_{\rm RMSE} \\ \ell_{\rm CL} + \ell_{\rm RMSE} \end{array} $	0.390 (0.325, 0.556) 0.172 (0.146, 0.197) 0.193 (0.148, 0.247)

∂u	∂u	$_{\downarrow}\partial^{2}u$	$\partial^4 u$
$\overline{\partial t} =$	$-u\frac{\partial x}{\partial x}$ –	$\phi \frac{\partial \phi}{\partial x^2}$ -	$\overline{\partial x^4}$

Training	Histogram Error \downarrow
$ \begin{array}{l} \ell_{\rm RMSE} \\ \ell_{\rm OT} + \ell_{\rm RMSE} \\ \ell_{\rm CL} + \ell_{\rm RMSE} \end{array} $	0.390 (0.325, 0.556) 0.172 (0.146, 0.197) 0.193 (0.148, 0.247)

- We see significant improvements on statistical properties for noisy data.
- Again, contrastive learning requires **no prior knowledge**!

∂u	∂u	$_{_{\perp}}\partial^{2}u$	$\partial^4 u$
$\overline{\partial t} =$	$-u\frac{\partial x}{\partial x}$ -	$\varphi \overline{\partial x^2}$ -	$\overline{\partial x^4}$

Training	Energy Spec. Error ↓
$ \begin{array}{l} \ell_{\rm RMSE} \\ \ell_{\rm OT} + \ell_{\rm RMSE} \\ \ell_{\rm CL} + \ell_{\rm RMSE} \end{array} $	0.290 (0.225, 0.402) 0.211 (0.188, 0.250) 0.176 (0.130, 0.245)

- We see significant improvements on statistical properties for noisy data.
- Again, contrastive learning requires **no prior knowledge**!

Emulator Evaluation: Lorenz 96

$$\frac{du_i}{dt} = (u_{i+1} - u_{i-2})u_{i-1} - u_i + F$$

r	Training	Histogram Error \downarrow
0.1	$ \begin{array}{l} \ell_{\rm RMSE} \\ \ell_{\rm OT} + \ell_{\rm RMSE} \\ \ell_{\rm CL} + \ell_{\rm RMSE} \end{array} \end{array} $	0.056 (0.051, 0.062) 0.029 (0.027, 0.032) 0.033 (0.029, 0.037)
0.2	$\ell_{\rm RMSE} \\ \ell_{\rm OT} + \ell_{\rm RMSE} \\ \ell_{\rm CL} + \ell_{\rm RMSE}$	0.130 (0.118, 0.142) 0.039 (0.035, 0.042) 0.073 (0.066, 0.080)
0.3	$ \begin{array}{l} \ell_{\rm RMSE} \\ \ell_{\rm OT} + \ell_{\rm RMSE} \\ \ell_{\rm CL} + \ell_{\rm RMSE} \end{array} $	0.215 (0.204, 0.234) 0.057 (0.052, 0.064) 0.132 (0.111, 0.151)

Training Emulators for Chaos: Summary

We train emulators to match the statistics of **high-dimensional**, **spatiotemporal chaotic attractors**.

Our approach performs significantly better in the **high noise regime**.

Contrastive representation learning can identify relevant statistics **without prior knowledge**.

Training Emulators for Chaos: Future Directions

Applications:

- Fluid turbulence
- Weather/climate modeling

Extensions:

- Transient dynamics
- Stochastic dynamics

Interpretability:

• What are the learned statistics?

• Can we improve interpretability?

Acknowledgments

Ruoxi (Roxie) Jiang

Elena Orlova

SCHMIDT FUTURES

Rebecca Willett

Vincenzo Vitelli

UChicago AI + Science Summer School July 15–19, 2024

Applications due tomorrow (March 8)!

https://datascience.uchicago.edu/events/ aiscience-summer-school-2024

A program of SCHMIDT FUTURES

Wasserstein Distance

$$\frac{1}{2}W(\mathbf{S},\hat{\mathbf{S}})^2 := \min_{T \in \Pi} \sum_{i,j} T_{ij} C_{ij}$$

$$C_{ij} = \frac{1}{2} \|\mathbf{s}_i - \hat{\mathbf{s}}_j\|^2$$

 $\forall i, j, T_{ij} \ge 0, \sum_j T_{ij} = 1, \text{ and } \sum_i T_{ij} = 1$

Entropy-regularized Wasserstein distance:

$$\frac{1}{2}W^{\gamma}(\mathbf{S}, \hat{\mathbf{S}})^2 := \min_{T \in \Pi} \sum_{i,j} T_{ij} C_{ij} - \gamma h(T)$$

$$a(T) = -\sum_{i,j} T_{ij} \log T_{ij}$$

Contrastive Learning: InfoNCE Loss

Full Results: Kuramoto–Sivashinsky

Training	Histogram Error \downarrow	Energy Spec. Error \downarrow	Leading LE Error \downarrow
$\ell_{\rm RMSE} \\ \ell_{\rm Sobolev} + \ell_{\rm dissipative} \\ \ell_{\rm MMD} + \ell_{\rm RMSE} \\ \ell_{\rm OT} + \ell_{\rm RMSE} \\ \ell_{\rm OT} + \ell_{\rm RMSE}$	0.390 (0.325, 0.556) 0.427 (0.289, 0.616) 0.245 (0.218, 0.334) 0.172 (0.146, 0.197)	0.290 (0.225, 0.402) 0.237 (0.204, 0.315) 0.216 (0.186, 0.272) 0.211 (0.188, 0.250)	0.101 (0.069, 0.122) 0.023 (0.012, 0.047) 0.101 (0.058, 0.125) 0.094 (0.041, 0.127) 0.102 (0.069, 0.122)

Training	Histogram Error \downarrow	Energy Spec. Error↓	Leading LE Error \downarrow
$\ell_{\text{RMSE}} (\sigma_b = 0.1) \\ \ell_{\text{RMSE}} (\sigma_b = 0.5) \\ \ell_{\text{RMSE}}$	0.390 (0.326, 0.556)	0.290 (0.226, 0.402)	0.098 (0.069, 0.127)
	1.011 (0.788, 1.264)	0.493 (0.379, 0.623)	0.098 (0.041, 0.427)
	0.390 (0.325, 0.556)	0.290 (0.225, 0.402)	0.101 (0.069, 0.122)

Full Results: Lorenz 96

r	Training	Histogram Error \downarrow	Energy Spec. Error \downarrow	Leading LE Error \downarrow	FD Error \downarrow
0.1	$ \begin{array}{l} \ell_{\rm RMSE} \\ \ell_{\rm OT} + \ell_{\rm RMSE} \\ \ell_{\rm CL} + \ell_{\rm RMSE} \end{array} $	0.056 (0.051, 0.062) 0.029 (0.027, 0.032) 0.033 (0.029, 0.037)	0.083 (0.078, 0.090) 0.058 (0.052, 0.064) 0.058 (0.049, 0.065)	0.013 (0.006, 0.021) 0.050 (0.040, 0.059) 0.065 (0.058, 0.073)	1.566 (0.797, 2.309) 1.424 (0.646, 2.315) 1.042 (0.522, 1.685)
0.2	$ \begin{array}{l} \ell_{\rm RMSE} \\ \ell_{\rm OT} + \ell_{\rm RMSE} \\ \ell_{\rm CL} + \ell_{\rm RMSE} \end{array} $	0.130 (0.118, 0.142) 0.039 (0.035, 0.042) 0.073 (0.066, 0.080)	0.182 (0.172, 0.188) 0.086 (0.079, 0.095) 0.131 (0.117, 0.149)	0.170 (0.156, 0.191) 0.016 (0.006, 0.030) 0.012 (0.006, 0.018)	2.481 (1.428, 3.807) 2.403 (1.433, 3.768) 1.681 (0.656, 2.682)
0.3	$\ell_{\rm RMSE} \\ \ell_{\rm OT} + \ell_{\rm RMSE} \\ \ell_{\rm CL} + \ell_{\rm RMSE}$	0.215 (0.204, 0.234) 0.057 (0.052, 0.064) 0.132 (0.111, 0.151)	0.291 (0.280, 0.305) 0.123 (0.116, 0.135) 0.241 (0.208, 0.285)	0.440 (0.425, 0.463) 0.084 (0.062, 0.134) 0.064 (0.045, 0.091)	3.580 (2.333, 4.866) 3.453 (2.457, 4.782) 1.894 (0.942, 3.108)

Training statistics	Histogram Error \downarrow	Energy Spec. Error \downarrow	Leading LE Error \downarrow	FD Error \downarrow
S (full)	0.057 (0.052, 0.064)	0.123 (0.116, 0.135)	0.084 (0.062, 0.134)	3.453 (2.457, 4.782)
S ₁ (partial)	0.090 (0.084, 0.098)	0.198 (0.189, 0.208)	0.263 (0.217, 0.323)	3.992 (2.543, 5.440)
S ₂ (minimum)	0.221 (0.210, 0.234)	0.221 (0.210, 0.230)	0.276 (0.258, 0.291)	3.204 (2.037, 4.679)

